

Max Marks: 60

Date: 28.08.2022

JB 2 MR BATCH PHYSICS : DCT Topic: Relative Motion and NLM

1. With what acceleration 'a' should the box in the figure descend so that the block of mass M exerts a force Mg/4 on the floor of the box?

- (a) g/4 (b) g/2 (c) 3g/4 (d) 4g
- 2. Consider the following statement about the blocks shown in the diagram that are being pushed by a constant force on a frictionless table.

$$F \longrightarrow 3 \text{kg} 2 \text{kg} 1 \text{kg}$$

- A. All blocks move with the same acceleration.
- B. The net force on each block is the same

Which of these statement are/is correct?

(a) A only (b) B only (c) both A and B (d) neither A nor B

3. A body of mass 2 kg moves vertically downwards with an acceleration $a = 19.6 \text{ m/s}^2$. The force acting on the body simultaneously with the force of gravity is (g = 9.8 m/s² neglect air resistance)

(a) 19.6 N (b) 19.2 N (c) 59.2 N (d) 58.8 N

Space for Rough Work

4. A time dependent force F = 3t (F in Newton and t in second) acts on three blocks m_1 , m_2 and m_3 kept in contact on a rough ground as shown. Co-efficient of friction between blocks and ground is 0.4. If m_1 , m_2 and m_3 are 3 kg, 2 kg and 1 kg respectively, the time after which the blocks start to move is ($g = 10 \text{ ms}^{-2}$)

5. Two blocks, each having a mass M, rest on frictionless surface as shown in the figure. If the pulleys are light and frictionless, and M on the incline is allowed to move down, then the tension in the string will be

- 6. A body of mass m is kept stationary on a rough inclined plane of inclination θ . The magnitude of force acting on the body by the inclined plane is
 - (a) mg (b) mg sin θ (c) mg cos θ (d) mg $\sqrt{1 + \cos^2 \theta}$
- 7. The pulleys and strings shown in the figure are smooth and of negligible mass. For the system to remain in equilibrium, the angle θ should be:

Space for Rough Work

8. A block of metal weighing 2 kg is resting on a frictionless plane. It is struck by a jet of water at a rate of 1 kgs⁻¹ at a speed of 5 ms⁻¹. The initial acceleration of the block is

(a)
$$\frac{2}{5}$$
ms⁻² (b) $\frac{5}{2}$ ms⁻² (c) 5 ms⁻² (d) $\frac{1}{5}$ ms⁻²

9. A block of mass m is attached to a massless spring of spring constant K. This system is accelerated upward with acceleration a. The elongation in spring will be

(a)
$$\frac{mg}{K}$$
 (b) $\frac{m(g-a)}{K}$ (c) $\frac{m(g+a)}{K}$ (d) $\frac{ma}{K}$

10. The elevator shown in figure is descending with an acceleration of 2 ms⁻². The mass of the block A = 0.5 kg. The force exerted by the block A on the block B is $(g = 10 \text{ ms}^{-2})$

- 11. A man slides down a light rope whose breaking strength is η times his weight ($\eta < 1$). The maximum acceleration of the man so that the rope just breaks is
 - (a) $g(1-\eta)$ (b) $g(1+\eta)$ (c) $g\eta$ (d) $\frac{g}{\eta}$
- 12. A body of mass 1.5 kg is thrown vertically upwards with an initial velocity of 40 m/s reaches its highest point after 3 s. The air resistance acting on the body during the ascent is (assuming air resistance to be uniform, $g = 10 \text{ m/s}^2$)

13. Three blocks of masses 2kg, 4kg and 6kg are connected by string and resting on a frictionless incline of 53° as shown. A force of 120 N is applied upward along the incline to the 6 kg block. If the strings are ideal, the ratio T_1/T_2 will be (g = 10 ms⁻²)

14. A block of mass 20 kg is balanced by three strings A, B & C as shown in figure. Ratio of tensions in string A and B (T_A/T_B) is

15. A block of mass 0.1 kg is held against a wall by applying a horizontal force of 5 N on the block. If the coefficient of friction between the block and the wall is 0.5, the magnitude of the frictional force acting on the block is

(a)	2.5 N	(b)	0.98 N	(c)	4.9 N	(d)	0.49 N
-----	-------	-----	--------	-----	-------	-----	--------

Space for Rough Work

Max Marks: 60

Date: 28.08.2022

JB 2 MR BATCH CHEMISTRY: DCT Topic: Mole Concept + Periodic Table

16.	$^{35}_{17}Cl$ and $^{37}_{17}Cl$ are two isotopes of chlorine. If average atomic mass is 35.5 then ratio of these two isotopes is											
	(a)	35:37	(b)	1:3	(c)	3:1	(d)	2:1				
17.	Num	ber of atoms in i	ncreasing or	der in 1.6 g CH ₄ , 1.	.7 g NH ₃ a	nd 1.8 g H ₂ O is						
	(a)	$H_2O=NH_3\!=\!$	CH ₄		(b)	$H_2O < NH_3 < CH_4$	1					
	(c)	$CH_4 < NH_3 <$	H_2O		(d)	$CH_4 = NH_3 < H_2O$						
18.	Whic	Which has maximum number of H-atoms per gram of the substance?										
	(a)	CH_4	(b)	CuSO ₄ .5H ₂ O	(c)	H_2O_2	(d)	H ₂ O				
19.	If eac	h O-atom has tw	vo equivalen	ts, volume of one e	quivalent	of O ₂ gas at STP is						
	(a)	22.4 L	(b)	11.2 L	(c)	5.6 L	(d)	44.8 L				
20.	In a g	as S and O are 5	50% by mass	s, hence, their mole	ratio is							
	(a)	1:1	(b)	1:2	(c)	2:1	(d)	3:1				
21.	The p	bercentage comp	osition of ca	urbon by mole in me	ethane is							
	(a)	75%	(b)	20%	(c)	25%	(d)	80%				
22.	For the	ne following read	ction, the ma	ass of water produce	ed from 44	45 g of C ₅₇ H ₁₁₀ O ₆ is						
	2C ₅₇ H	$H_{110}O_6(s) + 1630$	$g_2(g) \rightarrow 1140$	$CO_2(g) + 110 H_2O(l)$.)							
	(a)	490 g	(b)	495 g	(c)	445 g	(d)	890 g				
23.	Al and KClO ₃ react together to form Al ₂ O ₃ according to											
$2\text{KClO}_3 \rightarrow 2\text{KCl} + 3\text{O}_2$												
	4Al +	$-3O_2 \rightarrow 2Al_2O_3$										
	4 mo	les of KClO ₃ (50)% pure) on	reaction with exces	s of Al fo	rm how many moles	of Al ₂ O ₃	?				
	(a)	2 mol	(b)	4 mol	(c)	6 mol	(d)	8 mol				
				Space for F	Rough Wo	ork						

Learning with the Speed of Mumbai and the Tradition of Kota

24.	36.6 g of the crystal hydrate of barium chloride when roasted lose 5.4 g in mass. Thus, salt is [Ba = 137]										
	(a)	BaCl ₂ .5H ₂ O	(b)	BaCl ₂ .4H ₂ O	(c)	BaCl ₂ .3H ₂ O	(d)	BaCl ₂ .2H ₂ O			
25.	The ato	oms of the elements	belongi	ng to the same group	of the p	eriodic table will have	e				
	(a)	the same number of	of protor	18							
	(b)	(b) the same number of electrons in the valence-shell									
	(c)	(c) the same number of neutrons									
	(d) the same number of electrons										
26.	Which will have graded property similar to electronic configuration $1s^22s^22P^63s^23P^64s^1$?										
	(a)	$[Ar]3d^{10} 4s^1$	(b)	$[Kr]4d^{10} 5s^1$	(c)	[Kr] 5s ¹	(d)	All of these			
27.	Which	has maximum IE?									
	(a)	Mg	(b)	Mg^+	(c)	Mg^{2+}	(d)	Equal			
28.	Which	of the following wi	ll have t	he most negative elec	tron affi	inity and which the le	ast nega	tive?			
	(a)	F, Cl	(b)	Cl, F	(c)	Cl, S	(d)	Cl, P			
29.	Metalli	ic nature increased r	noving o	down the group becau	ise						
	(a)	nuclear charge inc	rease		(b)	shielding increases					
	(c)	Both (a) and (b)			(d)	None of the above					
30.	Three elements X,Y and Z are in the 3^{rd} period of the periodic table. The oxides of X,Y and Z, respectively basic, amphoteric and acidic. The correct order of the atomic number of X,Y and Z is										
	(a)	Z < Y < X	(b)	X < Y < Z	(c)	X < Z < Y	(d)	Y < X < Z			

* * * * *

are

Space for Rough Work

Max Marks: 60

Date: 28.08.2022

JB 2 MR BATCH PHYSICS : DCT ANSWER KEY Topic: Relative Motion and NLM

1.	(c)	2.	(a)	3.	(a)	4.	(b)	5.	(c)
6.	(a)	7.	(c)	8.	(b)	9.	(c)	10.	(b)
11.	(a)	12.	(d)	13.	(c)	14.	(a)	15.	(b)

Max Marks:60

Date: 28.08.2022

JB 2 MR BATCH CHEMISTRY: DCT ANSWER KEY Topic: Periodic Properties +Moles+ Oxidation

16.	(c)	17.	(b)	18.	(a)	19.	(c)	20.	(b)
21.	(b)	22.	(b)	23.	(a)	24.	(d)	25.	(b)
26.	(c)	27.	(c)	28.	(d)	29.	(c)	30.	(b)